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Abstract: - In this paper, a novel Stator Current Based 
Model Reference Adaptive System (SC_MRAS) speed 
estimation scheme using neural network (NN) and Sliding 
Mode (SM) is proposed to improve the performance of the 
MRAS speed observer for high-performance Six Phases 
Induction Motor (SPIM) drives, especially at low and zero 
speed region, where the poor performance of observers is 
still always a large challenge. In this novel SC_MRAS 
scheme, a two-layer linear NN, which has been trained 
online by means of the Total Least Squares (TLS)  
algorithm, is used as an adaptive model to estimate the 
stator current and  this model is employed in prediction 
mode. These novel proposed can ensure that the whole drive 
system achieves faster satisfactory torque and speed control 
and strong robustness, the observer operate better accuracy 
and stability both in transient and steady-state operation. 
Especially, in this proposed observer, the rotor flux, which 
is needed for the stator current estimation of the adaptive 
model and providing to the controller, is identified based on 
adaptive SM technique. The improvement of Rotor Flux 
Estimation for SC_MRAS-Based Sensorless SPIM Drives 
help to eliminate the disadvantages in SC_MRAS based 
observer such as  stator resistance sensitivity, and flux open 
loop integration which may cause dc drift and initial 
condition problems or instability in the regenerating mode 
of operation, therefore, enhancing the rotor flux estimation, 
speed estimation and control accuracy at very low and zero 
stator frequency operation help improve the overall 
observer and drive system performance. The indirect field 
oriented control (IFOC) for speed control of a sensorless 
SPIM drive using the proposed observer is built by 
MATLAB/ Simulink. The simulation results are presented 
under sensorless speed control performance to validate the 
effectiveness of the proposed estimation and control 
algorithms. 
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I. INTRODUCTION 
N the past decades, multiphase motor drives have been 
proposed for applications [1–3] due to its advantages 

are such as: decrease the single switches current stress 
instead of adopting parallel techniques, low 
electromagnetic torque pulsations, DC link current 
harmonics, overall system reliability and better power 
distribution per phase improve the overall system 
reliability [3]. Among the different control solutions for 
SPIM drives, one of the most interesting and extensively 
discussed in the literature is SPIM having two sets of 

three-phase windings spatially shifted by 30 electrical 
degrees. Neutral points of the two windings can be 
isolated or connected. The major reason for selecting the 
asymmetrical six-phase winding instead of the true six-
phase winding (60° displacement between any two 
consecutive phases) was the elimination of the sixth 
harmonic from the torque [3], which is important in six-
phase IM drives using voltage source inverter (VSI) with 
six-step operation. 
In order to regulate the SPIM in highperformance 
applications several control techniques have been 
developed being the field oriented control method [1] one 
of the most popular techniques. The correct knowledge of 
rotor speed information for field orientation is required. 
Moreover, the precise speed signal for closed-loop 
control is needed; therefore, speed encoders are essential 
to be mounted on the rotor shaft for position and speed 
information [4]. However, the encoder causes extra cost, 
larger size, and extra wiring of IM drives and limits their 
applications in a relatively harsh environment. In recent 
years, the development of sensorless IM drives without 
encoders or sensors have becoming more and more 
popular due to their advantages of minimizing production 
costs and developing a reliable and robust control system. 
Sensorless techniques are employed in hostile 
environments and also for emergency operations in 
safety-critical applications in case of failure of the sensor. 
They usually are divided into two categories, the 
fundamental model based observers and anisotropies 
model based observers. Model-based estimation 
strategies include open-loop observers [5], sliding-mode 
observers [6], Extended Kalman Filter [7], Backstepping 
[8],  model reference adaptive systems (MRAS) [9] and 
artificial intelligence (AI) [10]. Recent research also used 
predictive current control for sensorless IM drives [11]. 
Sensorless drives have been successfully applied in 
medium and high speed regions [12], [13], but low and 
zero speed operation is still a large challenge. In order to 
overcome these problems a high frequency voltage or 
current carrier were injected, needed to excite the 
saliency itself [14]. This method works well at low and 
near zero speed region. However, their major 
disadvantages are computational complexity, the need of 
external hardware for signal injection and the adverse 
effect of injecting signal on the machine performance. 
Due to its simplicity and ease of implementation the 
model based methods and especially MRAS based 
methods are, until now, the most widely used. The main 
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problems associated with the low speed operation of 
model-based sensorless drives are related to machine 
parameter sensitivity, stator voltage and current 
acquisition, and flux pure integration problems [15-18].  
Numerous MRAS have been proposed. Among them, the 
rotor flux MRAS first introduced by Schauder [19], Flux 
Backstepping Observer [20], both suffer from DC drift 
problems associated with pure integration and sensitivity 
to stator resistance variation, especially in the low speed 
region.  In order to improve the performance of observer 
overcome the effect by sensitivity to stator resistance 
variation, online adaptation of the stator resistance [21],  
the pure integration problems, Extended Kalman Filter 
(EKF), a modified torque based on MRAS schemes have 
proposed in [19], [20], respectively. Although [22] , [23] 
have shown that these approaches significantly improve 
the performance of the RF-MRAS at low speed, these 
scheme remain the effected by the sensitivity to 
parameter variations. An improved rotor flux estimation 
to  eliminate the pure integration problems and the effect 
of sensitivity to parameter variations for a Torque MRAS 
is proposed in [24]. Simulation and experimental results 
are shown the sensorless control drive operating at low 
and zero speeds, with both motoring and regenerative 
operations considered. The performance of the observer 
in low speed regenerating region and the performance of 
the transient and steady state were significantly improved 
at very low and zero rotor speeds. Analysis of the effect 
of parameter variation on the scheme performance has 
shown improved robustness against stator and rotor 
resistance variation over a wider range of load torques 
compared to results previously published for the 
conventional scheme. However, the estimated error 
increase at very low (3.14 rad/s) and zero speed range is 
recorded. The performance of the speed estimation in low 
speed regenerating region and the performance of the 
transient and steady state is not really satisfied. 
Another approach, the stator current MRAS scheme has 
been introduced in [25-27]. [26] presents a stator current 
based MRAS speed observer using NN, which is an 
evolution of [25]. In this proposed scheme, to avoid the 
effect of a pure integrator and reduce influence of motor 
parameter variations, the measured stator current 
components are used as the reference model. The 
adaptive model of the proposed observer in [26] uses a 
two-layer NN with a BPN algorithm to estimate the rotor 
speed, an off-line trained multilayer feed-forward neural 
network is proposed as a rotor flux observer. The 
simulation and experimental results have proven that the 
significantly improvement operation performance in low 
and zero speed ranges, the lowest speed limit 25 rpm (2.6 
rad/s) was reported. The results in [20] also demonstrate 
that the proposed observer can handle the parameter 
variation problem with a good level of robustness, 
sensorless performance with a 50% variation in 
resistances at low speed, 25% load. Although [26] can 
overcome the main problems associated with the low zero 
and speed operation, however, due to [26] the use of the 
nonlinear BPN algorithm to training a neural network 
causes some problem as local minima, paralysis of the 

neural network, need of two heuristically chosen 
parameters, initialization problems, and convergence 
problems. These make the performance of observer in 
[26] is not really as expected. The speed estimation error 
and oscillation phenomenon at low and zero increase. 
Other side, the adaptive model in [26] is used in 
simulation mode, which means that its outputs are fed 
back recursively, this also make  reduce the accuracy and 
stability of the responses of observer. Finally, the use of 
two networks: the first is online trained for stator current 
estimation and the second is off-line trained for rotor flux 
estimation will make increase the complexity and 
computational burden require high about hardware and 
time handle the data. This impose a large disadvantage of 
MRAS [26]. 
In this paper, a SC_MRAS based observer using NN and 
SM is proposed for improving the performance of the 
sensorless vector control SPIM drives, especially in low 
and zero speed ranges. the new points are developed in 
this SC_MRAS scheme are, first: Adaptive model uses a 
two layer linear neural network, which is trained online 
by a linear TLS algorithm, this algorithm requires the less 
computation effort and overcome some drawbacks, which 
cause by its inherent nonlinearity as in literature 
published before [26]. The other side, the TLS neuron has 
been employed because it permits to take into 
consideration also the uncertainty of the elements of the 
data matrix, which in real world applications are due to 
noisy measurements and incorrect estimation, these 
problems is able to yet to be sovled thoroughly more OLS 
algorithm in [27], Second: the adaptive model based on 
NN is implemented in the prediction mode with no 
feedback loops between the output of the neural network 
and its input. This neural model is also used as a predictor 
with no feedback loops between the output of the neural 
network and its input. This improvement  ensures the 
proposed observer operate better accuracy and stability, 
and especially, third: , an rotor flux identifier, which is 
needed for the stator current estimation of the adaptive 
model and controller, is proposed based on SM. The 
gains are designed based on stability conditions of 
Lyapunov theory. This solution improves the rotor flux 
estimation accuracy, and consequently, the speed 
estimation accuracy at very low stator frequency 
operation. Finally, the modified Euler integration has 
been used in the adaptive model to solve the instability 
problems due to the discretization of the rotor equations 
of the machine enhance the performance of observer. 
The indirect field oriented control (IFOC) for speed 
control of a sensorless SPIM drive using the proposed 
estimation algorithms is built by MATLAB/ Simulink. 
The theoretical analysis is validated by simulation tests of 
the sensorless SPIM drive system under different 
operating conditions. Simulation results are given to 
compare the performance of the proposed observer with 
recent proposed observer. The comparison data have 
proven that the proposed NN_SM_SC_MRAS observer 
are quicker convergence in speed estimation, better 
dynamic performances; lower estimation errors both in 
transient and steady-state operation. The terms of 
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accuracy of the NN_SM_SC_MRAS observers is quite 
high and it is robustness against motor parameter 
variations.  The paper is organized into five sections. In 
Section 2, the basic theory of the model of the SPIM and 
the SPIM drive are presented. Section 3 introduces the 
proposed NN_SM_SC_MRAS observer. Simulation and 
discuss are presented in Section 4. Finally, the concluding 
is provided in Section 5. 

II. MODEL VECTOR CONTROL OF SPIM DRIVE 

The system under study consists of an SPIM fed by a 
six-phase Voltage Source Inverter (VSI) and a DC link. A 
detailed scheme of the drive is provided in Fig.1. By  
applying  the Vector  Space Decomposition  (VSD)  
technique introduced  in  [18],  the  original six-
dimensional space of the  machine is transformed  into  
three  two dimensional  orthogonal  subspaces in  the  
stationary  reference  frame  (D-Q),  ( x - y)  and  (zl -z2). 
This  transformation  is  obtained  by  means  of  6  x  6  
transformation  matrix:  
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In order to develop SPIM model for control purposes, 
some basic assumptions should be made. Hence, the 
windings are assumed to be sinusoidally distributed, the 
magnetic saturation, the mutual leakage inductances, and 
the core losses are neglected.  The electrical matrix 
equations in the stationary reference frame for the stator 
and the rotor may be written as 
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where: [V], [I], [R], [L] and [Lm] are voltage, current, 
resistant, self and mutual inductance vectors, 
respectively. P is differential operator. Subscript r and s 
related to the rotor and stator resistance respectively. 
Since the rotor is squirrel cage, [Vr] is equal to zero.  The 
electromechanical energy conversion only takes place in 
the DQ subsystem: 
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(3) 

As these equations implies, the electromechanical 
conversion, only takes place in the D-Q subspace and the 
other subspaces just produce losses. Therefore, the 
control is based on determining the applied voltage in the 
αβ reference frame. With this transformation, the 6PIM 
control technique is similar to the classical three phase 
IM FOC.  The control for the motor in the stationary 
reference frame is difficult, even for a three phase IM, so 
the transformation of SPIM model in a dq rotating 
reference frame to obtain currents with dc components[1] 
của 1 is necessary, a transformation matrix must be used 
to represent the stationary reference fame (α-β) in the 
dynamic reference (d - q). This matrix is given: 
 

cos( ) sin( )

sin( ) cos( )
r r

dq
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(4) 

where δr is the rotor angular position referred to the stator 
as shown in Fig. 1. 
The field oriented control (FOC) is the most used strategy 
in the industrial field. Its objective is to improve the static 
and dynamic behavior of asynchronous machine unlike 
the scalar control. It allows decoupling the 
electromagnetic quantities in order to make the control 
similar to DC machine. The principle of the FOC is to 
align the d axis of the rotating frame (Dq(d-q)) with the 
desired flux as shown in Fig. 1. Therefore, the flux will 
be controlled by the direct component of the stator 
current (isd) and the torque by the quadratic component 
(isq). In this case we obtain: 

0;rq rd rd   
 

 

Fig. 1  A general scheme of an SPIM drive 
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Using Eqs. (1) and (4), the new model motor dynamics is 
described by the following space vector differential 
equations: 
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III. NN_SM_SC_MRAS SPEED OBSERVER 

A. NNSM_SC_ MRAS speed Observer  

In this scheme, the measured stator current components 
are also used as the reference model of the MRAS 
observer to avoid the use of a pure integrator and reduce 
influence of motor parameter variation as in [25-26]. The 
adaptive model is a two-layer linear NN to estimate the 
stator current has been trained online by means of a least-
squares (LS) algorithm. This adaptive model is described 
by the combined voltage- and current  models in the 
stator reference frame (6) 
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Eq. (6), Then they been divided by Tn, be re written in 
the following as: 
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Its corresponding discrete model is, therefore, given by: 
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If n=1, the simple forward Euler method is 
obtained, which gives the following finite 
difference Eq. [15-17] 
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where marks the variables estimated with the adaptive 
model and is the current time sample. A neural network 
can reproduce these equations, where are the weights of 
the neural networks defined as: 
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where: ı̂ୱሺkሻthe current variables estimated with the 
adaptive model and k is the current time sample. An 
artificial neural network (ANN) can reproduce these 
equations, where w1, w2, w3, w4  are the weights of the 
neural networks defined as (11); Ts is the sampling time 
for the stator current observer. The ANN has, thus, four 
inputs and two outputs [25]–[26]. In the ANN, the 
weights w1, w2 and w3 are kept constant to their 
values computed offline while only w4 is adopted online. 

These equations are the same as those obtained in [26]. In 
the scheme is presented in [26], the adaptive model is 
characterized by the feedback of delayed estimated stator 
current components to the input of the neural network, 
which means that the adaptive model employed is in 
simulation mode. Moreover, the adaptive model is tuned 
online (training) by means of a BPN algorithm, however, 
nonlinear in its nature with the consequent drawbacks 
(local minima, heuristics in the choice of the network 
parameters, paralysis, convergence problems).  

 
In this TLS_SC_MRAS observer proposed, the 

adaptive model based on the ADALINE has been 
improved, A linear TLS algorithm, which is more 
suitable than a nonlinear one, like the BPN, is used to 
reduce the computation effort and overcome some 
drawbacks, which cause by its inherent nonlinearity. 
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Furthermore, the employment of the adaptive model in 
prediction mode leads to a quicker convergence of the 
algorithm, a higher bandwidth of the speed control loop, 
a better behavior at zero-speed, lower speed estimation 
errors both in transient and steady-state conditions. 
 
An integration method more efficient than that used in 
(12) is the so-called modified Euler integration, which 
also takes into consideration the values of the variables in 
two previous time steps [29]. From (6), the following 
discrete time equations can be obtained, as shown in (12). 
Also, in this case, a neural network can reproduce these 
equations, where  and are the weights of the neural 
networks defined as (13). 
Rearranging (12), the matrix equation is obtained in 
prediction mode; see (14). This matrix equation can  
be solved by any least-square technique.  (14) 
Matrix equation (14) can be written: Ax ≈ b, This is a 
classical matrix equation of the type, where A is called a 
“data matrix”, b is called an“observation vector,” and A 
is the scalar unknown. In this application a classical LS 
algorithm in a recursive form has been employed; This 
algorithm is described in detail in [30]. Fig. 2 shows the 
block diagram of the LS_SC_ MRAS speed observer. In 
literature there exist three Least-Squares techniques, i.e. 
the Ordinary Least-Squares (OLS), the Total Least-
Squares (TLS) and the Data Least-Squares(DLS) which 
arise when errors are respectively present only in b or 
both in A and in b or only in A.  The LS technique solves 
for this problem by calculating the value of ωr which 

minimises the sum of squares of the distances among the 
elements (ai, bi), with i = 1, . . . ,m, and the line itself. 
OLS minimises the sum of squares of the distances in the 
b direction (error only in the observation vector). TLS 
minimises the sum of squares in the direction orthogonal 
to the line (for this reason TLS is also called orthogonal 
regression) while DLS minimises the sum of squares in 
the A direction (errors only in the data matrix).  
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Fig. 2   LS_ SC_ MRAS speed observer 
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B. Rotor Speed Estimation Algorithm 

Formula (14), which is a classical matrix equation of the 
type Ax≈b, where A is called “data matrix”, b is called 
“observation vector,” and x is the vector consisting only 
of the unknown scalar ωr. 
Ax≈b is the linear regression problem under hand. All LS 
problems have been generalized by using a parameterized 
formulation (generalized LS) of an error function whose 

minimization yields the corresponding solution. This 
error is given by: 

۳ሺଡ଼ሻ ൌ
ሺAx െ bሻ୘ሺAx െ bሻ

1 െ ߦ ൅ ݔ்ݔߦ
 (15) 

where T represents the transpose and ߦ is equal to 0.5 for 
TLS, 1 for DLS and 0 for OLS. Depending on where the 
errors are present, this equation matrix can be solved 
either with OLS if the errors are present only in the 
observation vector, or with data OLS (DLS) if the errors 
are present only in the data matrix, or with TLS if the 
errors are present both in the data matrix and in the 
observation vector [30].   
From formula (14) shows that the matrix is composed of 
the dq-axis components of the rotor flux linkage which 
can be affected by errors and noise resulting from input 
stator current measurements, and the same can be said for 
the observation vector which is also composed of dq 
components of the rotor flux, the stator current, voltage: 
Therefore TLS will be a algorithm more appropriate than 
an OLS or a DLS algorithm. 

^ ^ ^ ^ ^

sD (k) 1 sD(k-1) 2 sD(k-1) 3 4 5 sD (k-2) 6 sD (k-2) 7 8rD (k-1) rQ (k-1) rD (k-2) rQ (k-2)

^ ^ ^

sQ (k) 1 sQ (k-1) 2 sQ (k-1) 3 4 5 sQ (k-2) 6 sQ (k-2)rQ (k-1) rD(k-1)

i = w i + w u + w ψ + w ψ w i - w u - w ψ - w ψ

i = w i + w u + w ψ - w ψ + w i - w u


^ ^

7 8rQ (k-2) rD (k-2)- w ψ + w ψ  

(12) 

2 2
s sm m m m

1 2 3 4 r 5
s r s r s r s r r s s r s r

m m
6 7 8 r

s r s r r s

3 T R 3 T R3 T L 3 T L 3 T L T L3 T
w = 1 - - ;  w = ;w = ; w = ω ;w = + ; 

2σL 2σL L T 2σ L 2σL L T 2σ L L 2σL 2σL L T

T L T LT
w = ; w = ; w = ω

2σ L 2σL L T 2σL L

(13) 
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Using TLS algorithm, this error is given by: 
 

2 2

( ) 2 2

( )( ) ( )

1 1 1r

TT
i i

T
r r

a bAx b Ax b
E

x x
 
 
 

  
  

(16) 

 
Remark that (Ax-b) is the dq axis vector error between 
the stator current from the reference model (SPIM) and 
the estimated current by the neural network, i.e, 
 

^

^

sDisD sD

isQ
sQsQ

i i

i i






              

(17) 

 
This error can be minimized with a gradient descent 
method. In [],[], this gives rise to the following speed 
adaptation law: 
The corresponding steepest descent discrete time formula 
is given by: 

^ ^

( ) ( -1)r r rk k   
 

(18) 

 
 
 
where: 

r
r

dE

d
 


  (19) 

 
2

2 2 2(1 ) (1 )
i

r r r

adE

d

  
  

 
   

(20) 
 

 
Substituting (19), (20) to Equation (18), we get the 
following modifed equation: 

2^ ^

2 2 2

^
2

( ) ( -1) ( )
(1 ) (1 )

( -1)

i
r r

r

a
k k

k

    
 

    

  
 

  

 (21) 
 

where:  

 
2(1 )





  

 
 is the learning rate, ai(k) is the row of A fed at instant ߟ
k, and bi(k) is the corresponding observation at instant k. 
This is the TLS learning law [30] and is its cost function. 
The TLS is a linear unit with inputs (ai vector), weights 
(vector ω ), one output (scalar), and one training error 
(scalar ρ(k)). 

^ ^
m m ^ ^ ^

rQ (k-1) rQ (k-2)
sQ (k) 1 sQ (k-1) 2 sQ (k-1) 3 5 sQ (k-2) 6 sQ (k-2) 7rQ (k-1) rQ (k-2)r s r s

r(k-1) ^^ ^
m m sQ (k)

rD (k-1) rD(k-2)
r s r s

3TL TL
ψ ψ

i - w i - w u - w ψ -  w i + w u + w ψ2σL L 2σL L
ω

3TL TL i - wψ ψ
2σL L 2σL L

  
  
 
  
 

^ ^

1 sQ (k-1) 2 sQ (k-1) 3 5 sQ (k-2) 6 sQ (k-2) 7rQ (k-1) rQ (k-2)i - w u - w ψ - w i + w u + w ψ

 
 
 
  

(14) 

C. Rotor Flux Estimation and Stability Analysis of 
Observer 

Consider a non-linear system described by: 

൜
zሶ ൌ Fሺ߱௥ሻz ൅ Gሺu, ߱௥, zሻ
y ൌ Cz																														  (22) 

where: 
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i
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

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
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     
                   

 

If the system is observable, the objective of the observer 
is to give the best state variables. From the measurement 
of output y and input u, the observer is defined by the 
follow structure: 

ˆ ˆ ˆ( ) ( , , )r r sz F z G u z I    
 (23) 

where Ʌ is the gain matrix and Is is a vector defined by: 

 1 2( ) ( )
T

sI sign s sign s
 

(24) 

With S is the slide surface of the observer is defined as 
following: 

 1 2
ˆ ˆ TT

sD sD sQ sQS s s i i i i       
(25) 

Subtracting Eq.16 and Eq.17 gives: 
 

 ˆ ˆ( ) ( ) ( , , ) ( , , )r r r r sF z F z G u z G u z I        

 
(26)

With ε is the error vector defined by: 

 1 2 3 4

ˆ ˆ ˆ ˆ

T

T

sD sD sQ sQ rD rD rQ rQi i i i

    

   



      

  (27) 

The aim of this section is to estimate the rotor flux 
components based on the stator currents and voltages that 

International Journal of Neural Networks and Advanced Applications 
DOI: 10.46300/91016.2020.7.1 

Volume 7, 2020

ISSN: 2313-0563 6



are easily measurable. From (17), the flux estimation 
algorithm based on sliding-mode theory is defined: 

1
ˆ ˆ ˆ ˆ

1
ˆ ˆ ˆ ˆ

m
rD sD rD r rQ rD s

r r

m
rQ sQ rQ r rD rQ s
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
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



 

(28) 

From (20), the dynamic of the estimation error is given 
by: 
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(29) 

By defining Lyapunov function as: 
1

2
TV S S

 
(30) 

Whose time derivative is, 
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(31) 

 

When the currents trajectory reaches the sliding surface 
ε1=ε2=0, the observer error dynamics given by (25) 
behaves, in the sliding-mode as a reduced order system 
governed only by the roto flux error, because 

 
In order to demonstrate the stability of the previous 
system, the following Lyapunov function candidate is 
proposed: 
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(32) 

The time derivative of the Lyapunov function candidate 
is: 
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(33) 

When sliding takes place: 
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are positive design constants.  

Note that  det ( ) 0r 
for all r and so the inverse 

always exist. From (23), when sliding takes place, 
substituting from (28) yields: 
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

 (35) 

This is, the flux observer error converges to zero with 
exponential rate of convergence.   
 

IV. SIMULINK AND DISCUSSION 

In order to verify and evaluate the performance of the 
SC_MRAS observer using NN and SM a sensorless 
vector control of SPIM drive system, as shown in Fig. 6 
has been simulated at different speed ranges through 
Matlab simulation software, specially surveyed at low 
speed range. Tests in this section are conducted based on 
recommended benchmark tests [23, 24, 32, 33, 34]. SPIM 
parameters: 1HP, 220V, 50 Hz, 4 pole, 1450 rpm. Rs = 
10.1, Rr = 9.8546, Ls = 0.833457 H, Lr = 0.830811 
H, m = 0.783106H, Ji = 0.0088 kg.m2. The simulation 
results show the performance of the proposed estimator in 
different conditions: during speed reversal, low speed 
operation, ramp response, effect of parameter variation 
and during the regenerating mode operation. 

A. Dynamic Performance:  

In this first part, the dynamic performance of the drive 
and observer have been verified by the tests are 
conducted based on recommended Benchmark tests in 
[23], [33].   Test 1 presents rapid transitions and 
operating areas at large and zero speeds, Test 2 consists 
of low and very low speed operation and reversal.  In 
Test 1, the reference speed are imposed from zero 
increased to 125 rad/s and constant up to 4s. Then, it is 
reduced to zero. Between 2,5 s and 4,8 s, a quasi-
symmetric velocity profile is imposed in the opposite 
rotational direction, defining a second area of critical 
operating at -125 rad/s between 5s and 6s and constant up 
to 10s. Then, the motor speed is again reduced to zero. 
Rated load is applied at 2s and rejected at 4s, at 7s and 
rejected at 9s, respectively with –rated load is applied. 
The application and removal of a torque load at the 
moments will also assess the impact of this type of 
disturbance at the high speed operations. 

 

0is is  
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Fig. 3   Sensorless vector control of SPIM drive using LS_SC_MRAS observer 
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Fig. 4   The performance of NNSM_ SC_MRAS obsever during high speed reveral  
(a) Speed responses and error, respectively; (b) Stator current phase A and  torque respone 

 
The results in Fig.4 show the speed 

responses, thre speed estimation error, the stator 
current and torque during test 1. From these 
simulation results show that although surveyed with 
larger speed range compare to in [33] (Fig. 2a)), the 
estimation performance of NNSM_SC_MRAS 
observer is very good at high, low and zero speed and 
reversal.  The speed estimation error is the estimated 
speed perfectly follows the rotor speed with good 

behavior in terms of tracking and disturbance 
rejection. The proposed schemes in [23]; [33]; and 
NNSM_SC_MRAS scheme, the speed reversal is 
accomplished in less than 1s and that the torque 
response is instantaneous. The speed error is 
maximum at zero crossing and during the speed 
transient and it is about as much as  0.105 rad/s in 
NNSM_SC_MRAS observer, 0.5 rad/s in the 
proposed observer [23] (Fig. 4, 5, 6). 

 

 

a) b) 

c)   
Fig. 5  The performance of NNSM_ SC_MRAS obsever during low speed reveral  

(a) Speed responses and error, respectively ; (b) Rotor flux responses and error, respectivel;  (c)  Torque responses 
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Furthermore, a speed reversal from 5 rad/s to -5 rad/s 
and 8 rad/s, at 25%load has been performed for 
testing the dynamic performances of the drive using 
NNSM-SC_MRAS at low speed. Fig. 5 shows the 
speed and torque response of NNSM_SC_MRAS 
drive is very quick and that after few oscillations it 
converges to the reference value. We observe very 
small oscillations during transients and very low 
orientation errors in the two critical areas of the 
proposed observer.  The application 25% load at 1.75 
s and keep constant in the whole time of the 
remaining survey will also assess the impact of this 
type of regenerating mode operation. Using SM to 
identify rotor flux will avoid the instability in the 
regenerating mode, the survey time from 3s to  6s, 
demonstrates this.  

From two above tests, the speed estimation 
performance of the proposed observer, which are 
surveyed in the case of very high dynamics in Fig. 4 
and Fig. 5 are very well, the maximum overshoot and 
the speed estimation error obtained with the 
NNSM_SC_ MRAS observer are lower than the 
corresponding one with the observer [23], [33] and 
[34]. The torque response obtained with this 

proposed observer is very smooth, while the 
corresponding one obtained with the the proposed 
observer in [34] is much affected by ripple ([34] Fig. 
3b, 4 b), [33] the performance of the observer in case 
of low speed reversal is not surveyed]. The 
performance of the proposed scheme is very stable 
and very good in wide speed range. 

B. The performance of proposed observer in very 
low speed ranges:  

In this three test, the performance of the speed 
estimation has been verified in the very low and zero 
speed ranges based on proposed benchmark tests 
[24]. The drive has been given a speed reference step 
from  15 rad/s to zero then increase to 15 rad/s, 3 
rad/s steps, 25% load applied at 2.5s and rejected at 
15s. Fig 6 a,b show the speed responses of proposed 
SC_MRAS at no load and 25% load, respectively. 
The simulink results show that no instability 
phenomena occur at low and zero speed range, the 
speed estimated error is not significantly. In contrast, 
with a proposed observer in [24] (Fig.7, Fig. 8)  
shows instability phenomena, the estimated error 
increase at low and zero speed range.   
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(a)       (b) 

Fig. 6 The speed of the SPIM in  very low operation speed region using: (a) no load; (b) 25% load 

Another survey also is carried out to justify the 
effectiveness of the proposed method in the low 
speed region by providing the sets of  ramp speed 
reference operation from 0 to ±15 rad/s working with 
rated load, This tests is conducted based on 
recommended benchmark tests [32].  In any case, 
better results in the estimation accuracy at low speeds 
are to be expected with both NNSM_SC_ MRAS and 
MRAS observers in [32]. The simulink results in 
Fig.7 and in [32] (Fig.4) show the performances of 
both the estimators for triangular speed command in 
both the forward and reverse motoring modes at rated 

load torque are very well. However, the zoom of 
speed figure show the speed deviation of 
NNSM_SC_MRAS estimator is less than the 
proposed MRAS estimator in [32]. For the MRAS 
observer, which is proposed in [32], the speed error  
the error between estimated, measured speed and 
reference higher, the convergence time of the 
estimated and measured speed to reference speed 
value are longer (Fig 4b) than NNSM_SC_MRAS 
obeserver. Using SM to estimate the rotor flux gives 
stability in the speed reveral, is not disturbed. 

 

 

Fig. 7 The speed of the SPIM in  very low speed ramp response 
 

C. Sensitivity to Stator Resistance Variation:  

The purpose of this test is to verify the speed 
estimation performance of the proposed MRAS 
observers for motor parameter variation. The drive 
and observer have been verified based on 
recommended benchmark tests in [23] but extending 
survey additionally case the resistance values 
increase 50%. Fig. 8 shows the performance of  the 
observer when Rs variations. Rs is increased 30% 
and 50%, load is applied at 2s.  The reference speed 
is increased from zero to 20 rad/s, then is reduced to 

12 rad/s to 7 rad/s to zero. The stable operation and 
oscillating speed performance of the NNSM_ 
SC_MRAS observer (Fig. 8) and proposed observer 
in [23] (Fig.10) obtained are very well with Rs 
increases 30%. For the proposed SC_MRAS,  when 
increasing Rs up to 50%,  its performance is still 
well, the speed and rotor flux estimation error only 
increase when observer working at zero speed region. 
(the performance of the observer with the Rs 
variation increased 50% were not shown in [23])   
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Fig. 8  The performance of the NNSM_SC_ MRAS observer when Rr variations  

(a) Estimated speed (b) Speed error (c) Estimated Rotor flux (d) Load torque  

D. Load Perturbations and the regenerating mode 
operation 

The robustness of the speed estimation of the 
observer to a sudden torque perturbation has been 
surveyed in this test. It was carried out to prove the 
behavior of the proposed scheme when load torque 
variations.   Fig. 9a shows the speed estimation 
performance of NNSM_SC_MRAS observer and 
drive system with the rotor speed responses of the 
proposed MRAS observer to a variation in load 
torque and rotor speed for the motoring regions of 
operation to a speed demand of 20 rad/s increase to 
80 rad/s, then reducing to 30 rad/s,  25% load applied 
at 3.5s, increasing to 75% load at 7.5s, and reducing 
to zero at 12s. Fig. 9b shows the regenerating 
operation regions, a speed demand of -5 rad/s, 25 
rad/s with 25% load and  55% load applied at 4s, 7.5s 
before a severe load torque reversal from 55% to -
55% occurs at 8.75 s. These result shows the 
proposed improved current MRAS scheme given 
better the transient and steady state performance than 
to the TMRAS in [24] (Fig.9; 10). This is due to the 
stator current based scheme is not directly affected by 
stator voltage, in contrast, TMRAS scheme in [24] 
for rotor flux estimation is affected by this voltage 
hence the proposed scheme have better performance 

especially at low speed with less steady state error. In 
Fig 14 from result of the flux and current responses 
show the proposed schemes capability of handling 
regenerative operation and large load changes better 
[24]. 

The behavior of the proposed scheme with rotor 
speed was kept by zero during test, the speed 
estimation performance for load disturbance rejection 
at +25% load in time 1.5s- 3s; -25% load in time 3s-
4.5s; and  6 s-7.5s;  75% load in 9s- 10.5. Fig. 15 
show the reference, measured, and estimated speed, 
these results show that the speed responses of the 
drive using the proposed NN SC_MRAS observer 
occurs immediately when the torque steps are given 
(Fig. 10). The small oscillations occur when 75% 
load rejected, however, very low estimation errors of 
the proposed observer, even during the speed 
transient that caused by the torque step, the estimated 
speed follows the real speed is very well. Comparing 
these result with the result in [24] (Fig. 12) is easily 
seen using SC_MRAS based observer with the 
improved rotor flux identify using SM given  the 
performance better. in [24] speed and rotor flux 
estimation error increase high when applying load, on 
the contrary, the NNSM_SC_MRAS scheme operates 
very well in whole survey range. 
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Fig. 9 Load Perturbations and the regenerating mode operation test: 

(a.) the Simulated responses to variation in speed and load demands for motoring operation; (b) Simulated responses to variation in negative 
speed and load demands for both motoring and regenerative operation. 

 

         

       
Fig. 1. Load Perturbations test at zero speed, load torque various 
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V. CONCLUSION 

This paper has presented a NNSM_ SC_MRAS speed 
observer for high performance SPIM drives using NN 
and SM. It lead evoluting and improving the MRAS 
observer shown in [26]. The new SC_MRAS speed 
observer using the TLS algorithm instead of OLS 
algorithm [27], BPN algorithm [35] to can both reducing 
the computation effort and still improving the 
performance of proposed observer. In addition, the 
adaptive model based on NN is implement in prediction 
mode also increase accuracy and stability both in 
transient and stable state operations. Especially, in this 
proposed observer, the rotor flux is identified based on 
adaptive SM technique. The improvement of Rotor Flux 
Estimation for SC_MRAS-Based Sensorless SPIM drives 
help to eliminate the disadvantages in SC_MRAS based 
observer such as stator resistance sensitivity, and flux 
open loop integration which may cause dc drift and initial 
condition problems or instability in the regenerating 

mode of operation, therefore, enhancing the rotor flux 
estimation, speed estimation and control accuracy at very 
low and zero stator frequency operation help improve the 
overall observer and drive system performance. 
 The theoretical analysis is validated by simulation tests 
of the sensorless SPIM drive system under different 
operating conditions and these simulation results are 
given to compare the performance of the proposed 
observer with recent proposed observer [23, 24, 32, 33, 
34]. The comparison data have proven that the proposed 
NN_SM_SC_MRAS observer are quicker convergence in 
speed estimation, better dynamic performances; lower 
estimation errors both in transient and steady-state 
operation. The terms of accuracy of the 
NN_SM_SC_MRAS observers is quite high and it is 
robustness against motor parameter variations, especially 
at low and zero speed region.   
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